Artificial Neural Network to Modeling Zero-inflated Count Data: Application to Predicting Number of Return to Blood Donation.

نویسندگان

  • Shima Haghani
  • Morteza Sedehi
  • Soleiman Kheiri
چکیده

BACKGROUND Traditional statistical models often are based on certain presuppositions and limitations that may not presence in actual data and lead to turbulence in estimation or prediction. In these situations, artificial neural networks (ANNs) could be suitable alternative rather than classical statistical methods. STUDY DESIGN  A prospective cohort study. METHODS The study was conducted in Shahrekord Blood Transfusion Center, Shahrekord, central Iran, on blood donors from 2008-2009. The accuracy of the proposed model to prediction of number of return to blood donations was compared with classical statistical models. A number of 864 donors who had a first-time successful donation were followed for five years. Number of return for blood donation was considered as response variable. Poisson regression (PR), negative binomial regression (NBR), zero-inflated Poisson regression (ZIPR) and zero-inflated negative binomial regression (ZINBR) as well as ANN model were fitted to data. MSE criterion was used to compare models. To fitting the models, STATISTICA 10 and, R 3.2.2 was used RESULTS: The MSE of PR, NBR, ZIPR, ZINBR and ANN models was obtained 2.71, 1.01, 1.54, 0.094 and 0.056 for the training and 4.05, 9.89, 3.99, 2.53 and 0.27 for the test data, respectively. CONCLUSIONS The ANN model had the least MSE in both training, and test data set and has a better performance than classic models. ANN could be a suitable alternative for modeling such data because of fewer restrictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه مدل شبکه عصبی مصنوعی با مدلهای رگرسیونی دادههای شمارشی در پیش بینی تعداد دفعات اهدای خون

 Background: Modeling is one of the most important ways for explanation of relationship between dependent and independent response. Since data, related to number of blood donations are discrete, to explain them it is better to use discrete variable distribution like Poison or Negative binomial. This research tries to analyze numerical methods by using neural network approach and compare ...

متن کامل

Application of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries

Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Artificial neural networks: applications in predicting pancreatitis survival

Artificial neural networks are intelligent systems that have successfully been used for prediction in different medical fields. In this study, the efficiency of a neural network for predicting the survival of patients with acute pancreatitis is compared with days-of-survival obtained from patients. A three- layer back-propagation neural network was developed for this purpose. Clinical data (e.g...

متن کامل

Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach

Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There is a positive correlation between the variables "number of blood donation" and "number of blood deferral": as the number of return for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to donate,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of research in health sciences

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2017